organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,11,17,23-Tetramethyl-2,8,14,20tetrakis(2-phenvlethvl)-4.6.10.12.16.-18,22,24-octahydroxycalix[4]arene methanol pentasolvate 0.10-hydrate

Holger B. Friedrich,^a R. Alan Howie,^b Glenn E. M. Maguire^a* and Michael G. Mc Kay^a

^aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and ^bDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland Correspondence e-mail: maguireg@ukzn.ac.za

Received 28 September 2007; accepted 12 October 2007

Key indicators: single-crystal X-ray study; T = 105 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.058; wR factor = 0.175; data-toparameter ratio = 18.6

The title compound [systematic name: 5,11,17,23-tetramethyl-2,8,14,16-tetrakis(2-phenylethyl)pentacyclo[19.3.1.1^{3,7}.1^{9,13}.-1^{15,19}]octacosa-1(25),3,5,7(28),9,11,13 (27),15,17,19(26),21,23dodecaene-4,6,10,12,16,18,22,24-octol methanol pentasolvate 0.10-hydrate], $C_{64}H_{64}O_8 \cdot 5CH_4O \cdot 0.103H_2O$, was synthesized as a new synthetic intermediate for resorcin[4]arene cavitand formation. The structure displays extensive $O-H \cdots O$ intraand intermolecular hydrogen bonding.

Related literature

For related literature, see: Cram et al. (1988); Tunstad et al. (1989).

Experimental

Crystal data

C ₆₄ H ₆₄ O ₈ ·5CH ₄ O·0.103H ₂ O	
$M_r = 1123.22$	
Monoclinic, $P2_1/n$	
a = 12.3109 (3) Å	
b = 30.6151 (7) Å	
c = 16.5024 (3) Å	
$\beta = 92.8385 \ (19)^{\circ}$	

V = 6212.1 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 105 (2) K $0.65 \times 0.50 \times 0.50 \mbox{ mm}$

Data collection

- Oxford Xcalibur-2 area-detector diffractometer Absorption correction: multi-scan (ABSPACK in CrysAlis RED;
- Oxford Diffraction, 2006) $T_{\min} = 0.785, \ T_{\max} = 0.960$

Refinement

ŀ

v S

1

$R[F^2 > 2\sigma(F^2)] = 0.058$	765 parameters
$vR(F^2) = 0.175$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$
4218 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

74273 measured reflections

 $R_{\rm int} = 0.028$

14218 independent reflections

10324 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
01-H1···O8	0.84	1.87	2.709 (2)	178
$O2-H2\cdots O6^{i}$	0.84	1.85	2.6442 (19)	157
O3−H3···O2	0.84	1.85	2.687 (2)	171
O4−H4···O5	0.84	1.98	2.805 (2)	169
O5−H5···O10	0.84	1.82	2.643 (2)	165
O6−H6···O7	0.84	1.86	2.7001 (19)	177
$O7 - H7 \cdot \cdot \cdot O9^{ii}$	0.84	1.86	2.639 (2)	154
O8−H8···O12	0.84	1.90	2.631 (2)	145
$O10-H10\cdots O13^{ii}$	0.84	1.92	2.754 (3)	173
O11−H11···O1	0.84	1.93	2.716 (2)	156
O12-H12···O13	0.84	1.91	2.748 (3)	174
O13-H13···O11	0.84	1.84	2.671 (3)	172

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

The authors acknowledge the DST-NRF Centre of Excellence in Catalysis, c*change, for financial support and Professor Orde Munro at the University of KwaZulu-Natal (Pietermaritzburg) for data acquisition.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2307).

References

Cram, D. J., Karbach, S., Kim, H.-E., Knobler, C. B., Maverick, E. F., Ericson, J. L. & Helgeson, R. C. (1988). J. Am. Chem. Soc. 110, 2229-2237.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Version 1.171.29.9. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Tunstad, L. M., Tucker, J. A., Dalcanale, E., Weiser, J., Bryant, J. A., Sherman, J. C., Helgeson, R. C., Knobler, C. B. & Cram, D. J. (1989). J. Org. Chem. 54, 1305-1312.

Acta Cryst. (2007). E63, 04346 [doi:10.1107/S160053680705012X]

5,11,17,23-Tetramethyl-2,8,14,20-tetrakis(2-phenylethyl)-4,6,10,12,16,18,22,24-octahydroxycalix[4]arene methanol pentasolvate 0.10-hydrate

H. B. Friedrich, R. A. Howie, G. E. M. Maguire and M. G. Mc Kay

Comment

In the title compound, (I), the [4]arene moiety, (I A), is a cyclic tetramer. The labelling scheme for one of the monomers, shown in Fig.1, extends over the whole molecule such that for monomer n the numbers p and q associated with particular C and O atoms, respectively, become p' = p + 16 x (n - 1) and q' = q + 2 x (n - 1). The asymmetric unit of (I) is shown in Fig. 2. The bond lengths and bond angles all fall within the normal ranges and are not discussed further. In molecule (I A) the 2-phenylethyl 'feet' all lie to one side of the macrocyclic ring surrounding the site of the partially occupied water molecule, O1W, with their phenyl groups in a cyclic edge-to-face arrangement. All but one of the OH groups participate in O—H···O hydrogen-bond formation (Table 1) and all but three of those listed occur within the asymmetric unit (Fig.2). The acceptor for methanolic O9 is the benzene ring, with centroid *Cg*, defined by C17—C22. The parameters for this O—H.. π contact include the H..*Cg* distance and O—H..*Cg* angle of 2.48 Å and 173°, respectively. The O2—H2··O6ⁱ (symmetry code as in Table 1) hydrogen-bond provides direct connection between molecules (1 A) in the propagation of chains in the direction of the cell edge a. The hydrogen-bonds O7—H7··O9ⁱⁱ and O10—H10··O13ⁱⁱ link chains, related to one another by crystallographic centres of symmetry, in pairs as shown in Fig. 3.

The partial occupancy of the water molecule associated with (I) is not exclusive to this structure, and has been noted before in related structures. For related literature, see Tunstad *et al.* (1989) and Cram *et al.* (1988).

Experimental

2-Methylresorcinol (12.41 g, 0.10 mol) was added to a stirred mixture of water (100 ml), ethanol (200 ml) and 32% aqueous HCl (50 ml). The reaction vessel and its contents were cooled to a temperature in the range of 273–278 K, by immersion in an ice-salt bath before 3-phenylpropionaldehyde (13.42 g, 0.10 mol) was added slowly over 30 minutes. Once addition was complete, the solution was allowed to slowly attain room temperature, after which time it was refluxed at 353 K for 48 h. The solution was cooled to room temperature, and water added in order to precipitate out the crude product. The brown material that separated was filtered from the solution, washed with cold 1:1 e thanol:water until the washings were light yellow and then redissolved in warm methanol and recrystallized overnight. The resulting peach-coloured material was then filtered from the methanol solution and thereafter stirred in hexane to remove residual aldehyde. The solid was filtered from hexane and dried, to yield the title compound as a peach-coloured microcrystalline solid. (13.93 g, 58%). mp 555–559 K. ¹H NMR [d₆-DMSO, 300 MHz]: d= 1.97 (s, 12 H, Ar CH₃), 2.49–2.50 (m, 28 H, CH₂CH₂Ar, and DMSO as solvent signal), 4.26–4.30 (t, J = 7.0 Hz, 4 H, CHCH₂), 7.13–7.29 (m, 20 H, C₆H₅), 7.39 (s, 4 H, Ar H), 8.73 (s, 8 H, OH). ¹³C NMR [CDCl₃, 75 MHz]: d = 149.34, 142.40, 128.70, 128.38, 125.81, 125.00, 111.88, 40.533, 40.250, 39.134, 38.859, 10.264. Anal Calcd for C₆₄H₆₄O₈ (961.195): C 79.97, H 6.71. Found: C 80.42, H 6.79.

A solution of the compound in hot methanol, subsequently cooled in a refrigerator at 277 K, provided crystals suitable for X-ray crystallography.

Refinement

In the final stages of refinement H atoms were placed in calculated positions with C—H distances of 0.95, 0.98, 0.99 and 1.00 Å for H bonded to aryl, methyl, methylene and tertiary C atoms, respectively, and at O—H distances of 0.84 Å. They were than refined with a riding model with $U_{iso}(H) = 1.5U_{eq}(X)$ for X = O or methyl C and $U_{iso}(H) = 1.2U_{eq}(C)$ otherwise. The torsion angles of the methyl and hydroxyl groups were also refined. The atom O1W was introduced into the structural model to account for an electron density feature of approximately 1 e/Å³. Its coordinates and sof were refined with its U_{iso} fixed, somewhat arbitrarily, at 0.05. This feature is interpreted as the O atom of a water molecule but its low occupancy factor [0.103 (5)] has prevented discovery of the associated H atoms which are, therefore, absent from the structural model. Rather large and significantly anisotropic displacement parameters for atoms C60—C62 are indicative of libration in this part of the molecule. The largest residual electron density peak of 0.67 e/Å³ is 0.94 Å from C11.

Figures

Fig. 1. A view of one component of the cyclic tetramer. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Dashed bonds indicate links to the neighbouring monomer units. This is the key to the labelling of the entire molecule - see text.

Fig. 2. The asymmetric unit of (1). Displacement ellipsoids are drawn at the 50% probability level and H atoms, where shown, are drawn as spheres of arbitrary radii. Dashed lines represent O—H…O and, for O9, O—H… π hydrogen bonds. Selected atoms are labelled.

Fig. 3. Hydrogen bonding in the double chain in (1). Displacement ellipsoids are drawn at the 10% probability level and H atoms, where shown, are drawn as spheres of arbitrary radii. Dashed lines represent O—H···O and, for O9, O—H··· π hydrogen bonds. Selected atoms are labelled. The drawing has been reduced in size and complexity by representing the phenyl groups of the 2-phenylethyl substituents by only those C atoms forming C—C bonds. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z + 1; (iii) -x + 2, -y, -z + 1.]

5,11,17,23-tetramethyl-2,8,14,16-tetrakis(2-phenylethyl)pentacyclo [19.3.1.1^{3,7}.1^{9,13}.1^{15,19}]octacosa-1(25),3,5,7(28),9,11,13 (27),15,17,19 (26),21,23- dodecaene-4,6,10,12,16,18,22,24-octol

al data	Crystal data
$F_{000} = 2412$	C ₆₄ H ₆₄ O ₈ ·5CH ₄ O·0.103H ₂ O
$D_{\rm x} = 1.201 {\rm Mg m}^{-3}$	$M_r = 1123.22$
clinic, $P2_1/n$ Melting point: 555-559 K	Monoclinic, $P2_1/n$
ymbol: -P 2yn Mo Kα radiation $\lambda = 0.71073$ Å	Hall symbol: -P 2yn
2.3109 (3) Å Cell parameters from 39787 reflections	<i>a</i> = 12.3109 (3) Å
$\theta = 3.7 - 34.1^{\circ}$	<i>b</i> = 30.6151 (7) Å
.5024 (3) Å $\mu = 0.08 \text{ mm}^{-1}$	c = 16.5024 (3) Å
$L.8385 (19)^{\circ}$ $T = 105 (2) \text{ K}$	$\beta = 92.8385 \ (19)^{\circ}$
1123.22 $D_x = 1.201 \text{ Mg m}^{-3}$ clinic, $P2_1/n$ Melting point: 555-559 K ymbol: -P 2yn $\lambda = 0.71073 \text{ Å}$ 2.3109 (3) Å Cell parameters from 39787 reflections 0.6151 (7) Å $\theta = 3.7-34.1^{\circ}$ 2.5024 (3) Å $\mu = 0.08 \text{ mm}^{-1}$ 2.8385 (19)° $T = 105$ (2) K	$M_r = 1123.22$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.3109 (3) Å b = 30.6151 (7) Å c = 16.5024 (3) Å $\beta = 92.8385$ (19)°

 $V = 6212.1 (2) \text{ Å}^3$ Z = 4 Block, light orange $0.65 \times 0.50 \times 0.50$ mm

Data collection

Oxford Xcalibur-2 area-detector diffractometer	14218 independent reflections
Radiation source: Enhance (Mo) X-ray Source	10324 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.028$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 105(2) K	$\theta_{\min} = 3.7^{\circ}$
φ and ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan [empirical (using intensity measurements) absorp- tion correction using spherical harmonics, implemen- ted in the SCALE3 ABSPACK scaling algorithm of CrysAlis RED (Oxford Diffraction, 2006)]	<i>k</i> = −39→39
$T_{\min} = 0.785, T_{\max} = 0.960$	$l = -21 \rightarrow 21$
74273 measured reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring

Intersectionsites $R[F^2 > 2\sigma(F^2)] = 0.058$ H-atom parameters constrained $wR(F^2) = 0.175$ $w = 1/[\sigma^2(F_o^2) + (0.0811P)^2 + 4.858P]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 1.09 $(\Delta/\sigma)_{max} = 0.001$ 14218 reflections $\Delta \rho_{max} = 0.67$ e Å⁻³765 parameters $\Delta \rho_{min} = -0.39$ e Å⁻³

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

O—H..pi geometry (extract from PLATON output listing)

O—H H.·Cg H-Perp Gamma O—H.·Cg O.·Cg O—H,Pi

O9—H9.·*Cg* 0.84 2.48 2.409 13.89 173 3.3182 (18) 80

Cg is the centroid of the ring defined by C17—C22

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.85729 (11)	0.09144 (5)	0.32812 (8)	0.0246 (3)	
H1	0.7916	0.0919	0.3116	0.037*	
O2	1.03772 (12)	0.08075 (5)	0.59094 (9)	0.0300 (3)	
H2	1.0931	0.0746	0.5655	0.045*	
O3	0.96781 (12)	0.05706 (5)	0.73621 (9)	0.0286 (3)	
Н3	0.9920	0.0671	0.6933	0.043*	
O4	0.63258 (12)	0.03653 (5)	0.85613 (8)	0.0252 (3)	
H4	0.5664	0.0424	0.8474	0.038*	
O5	0.40942 (12)	0.04559 (5)	0.81674 (9)	0.0273 (3)	
Н5	0.3490	0.0392	0.8351	0.041*	
O6	0.23362 (10)	0.05510 (4)	0.55231 (8)	0.0210 (3)	
H6	0.2554	0.0596	0.5056	0.032*	
07	0.30719 (11)	0.06709 (4)	0.40248 (8)	0.0227 (3)	
H7	0.3129	0.0413	0.3856	0.034*	
08	0.64617 (12)	0.09095 (5)	0.27331 (8)	0.0260 (3)	
H8	0.6123	0.0842	0.2296	0.039*	
O9	0.70597 (16)	0.01875 (5)	0.60865 (10)	0.0411 (4)	
Н9	0.7256	0.0358	0.6465	0.062*	
O10	0.23037 (16)	0.03459 (6)	0.89641 (11)	0.0454 (4)	
H10	0.2039	0.0095	0.9020	0.068*	
011	0.98560 (14)	0.07699 (6)	0.20163 (12)	0.0434 (4)	
H11	0.9627	0.0846	0.2466	0.065*	
012	0.62774 (17)	0.06765 (7)	0.11976 (11)	0.0535 (5)	
H12	0.6909	0.0610	0.1071	0.080*	
013	0.84004 (16)	0.05017 (6)	0.08692 (11)	0.0468 (5)	
H13	0.8876	0.0562	0.1235	0.070*	
O1W	0.6027 (15)	0.2344 (6)	0.6306 (12)	0.050*	0.103 (5)
C1	0.80760 (15)	0.14614 (6)	0.51960 (11)	0.0188 (4)	
H1A	0.7578	0.1662	0.5413	0.023*	
C2	0.79593 (15)	0.13561 (6)	0.43786 (11)	0.0184 (4)	
C3	0.86596 (15)	0.10398 (6)	0.40833 (11)	0.0187 (4)	
C4	0.94785 (15)	0.08440 (6)	0.45757 (12)	0.0197 (4)	
C5	0.95919 (15)	0.09790 (6)	0.53830 (12)	0.0208 (4)	
C6	0.88912 (15)	0.12854 (6)	0.57123 (11)	0.0198 (4)	
C7	0.90150 (15)	0.14173 (6)	0.66068 (11)	0.0200 (4)	
H7A	0.9787	0.1361	0.6793	0.024*	
C8	0.87922 (16)	0.19076 (6)	0.67358 (12)	0.0224 (4)	
H8A	0.8028	0.1970	0.6557	0.027*	
H8B	0.8875	0.1972	0.7323	0.027*	
С9	0.95389 (17)	0.22143 (7)	0.62824 (13)	0.0266 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H9A	1.0263	0.2222	0.6572	0.032*
H9B	0.9635	0.2097	0.5732	0.032*
C10	0.90986 (17)	0.26746 (7)	0.62107 (12)	0.0251 (4)
C11	0.9589 (2)	0.30254 (9)	0.66018 (17)	0.0498 (7)
H11A	1.0245	0.2981	0.6919	0.060*
C12	0.9150 (3)	0.34435 (9)	0.6546 (2)	0.0586 (8)
H12A	0.9489	0.3674	0.6848	0.070*
C13	0.8263 (2)	0.35265 (8)	0.60759 (17)	0.0451 (6)
H13A	0.7988	0.3816	0.6026	0.054*
C14	0.7747 (3)	0.31839 (10)	0.5659 (2)	0.0648 (9)
H14	0.7111	0.3236	0.5324	0.078*
C15	0.8169 (3)	0.27649 (9)	0.5738 (2)	0.0576 (8)
H15	0.7806	0.2532	0.5456	0.069*
C16	1.02018 (16)	0.04978 (7)	0.42312 (12)	0.0242 (4)
H16A	1.0795	0.0638	0.3955	0.036*
H16B	0.9773	0.0317	0.3843	0.036*
H16C	1.0505	0.0314	0.4672	0.036*
C17	0.72402 (15)	0.12586 (6)	0.72762 (11)	0.0197 (4)
H17	0.6972	0.1522	0.7038	0.024*
C18	0.82944 (15)	0.11320 (6)	0.71213 (11)	0.0197 (4)
C19	0.86595 (16)	0.07334 (6)	0.74615 (11)	0.0213 (4)
C20	0.79892 (16)	0.04773 (6)	0.79338 (11)	0.0227 (4)
C21	0.69420 (16)	0.06269 (6)	0.80808 (11)	0.0202 (4)
C22	0.65541 (15)	0.10231 (6)	0.77587 (11)	0.0184 (4)
C23	0.54167 (15)	0.11898 (6)	0.79234 (11)	0.0190 (4)
H23	0.5216	0.1063	0.8454	0.023*
C24	0.53656 (16)	0.16896 (6)	0.80089 (11)	0.0217 (4)
H24A	0.5586	0.1825	0.7497	0.026*
H24B	0.4604	0.1777	0.8091	0.026*
C25	0.60952 (19)	0.18671 (7)	0.87140 (13)	0.0289 (5)
H25A	0.5798	0.1776	0.9234	0.035*
H25B	0.6832	0.1740	0.8687	0.035*
C26	0.61727 (18)	0.23588 (7)	0.86898 (12)	0.0278 (4)
C27	0.54097 (19)	0.26162 (8)	0.90601 (14)	0.0337 (5)
H27	0.4835	0.2481	0.9330	0.040*
C28	0.5477 (2)	0.30689 (8)	0.90412 (15)	0.0414 (6)
H28	0.4960	0.3241	0.9307	0.050*
C29	0.6291 (2)	0.32680 (8)	0.86384 (16)	0.0455 (7)
H29	0.6333	0.3578	0.8624	0.055*
C30	0.7051 (2)	0.30190 (9)	0.82532 (17)	0.0474 (6)
H30	0.7610	0.3156	0.7969	0.057*
C31	0.6987 (2)	0.25636 (8)	0.82873 (15)	0.0394 (5)
H31	0.7512	0.2392	0.8029	0.047*
C32	0.8400 (2)	0.00431 (7)	0.82479 (14)	0.0331 (5)
H32A	0.8684	-0.0126	0.7801	0.050*
H32B	0.7802	-0.0118	0.8481	0.050*
H32C	0.8981	0.0090	0.8666	0.050*
C33	0.44583 (15)	0.12271 (6)	0.65276 (11)	0.0180 (4)
H33	0.4909	0.1470	0.6417	0.022*

C34	0.45880 (15)	0.10231 (6)	0.72794 (11)	0.0191 (4)
C35	0.39305 (15)	0.06632 (6)	0.74253 (11)	0.0206 (4)
C36	0.31748 (15)	0.05023 (6)	0.68409 (12)	0.0205 (4)
C37	0.30842 (14)	0.07197 (6)	0.60963 (11)	0.0180 (4)
C38	0.36957 (15)	0.10907 (6)	0.59312 (11)	0.0175 (4)
C39	0.34967 (14)	0.13512 (6)	0.51486 (11)	0.0166 (3)
H39	0.2751	0.1273	0.4926	0.020*
C40	0.34971 (15)	0.18472 (6)	0.53140 (12)	0.0203 (4)
H40A	0.4218	0.1933	0.5555	0.024*
H40B	0.3384	0.2004	0.4792	0.024*
C41	0.26174 (16)	0.19876 (6)	0.58852 (13)	0.0241 (4)
H41A	0.1893	0.1954	0.5605	0.029*
H41B	0.2645	0.1795	0.6368	0.029*
C42	0.27684 (16)	0.24562 (6)	0.61530 (12)	0.0224 (4)
C43	0.35539 (18)	0.25666 (7)	0.67442 (14)	0.0316 (5)
H43	0.3986	0.2343	0.6996	0.038*
C44	0.3725 (2)	0.29988 (8)	0.69781 (15)	0.0367 (5)
H44	0.4273	0.3068	0.7383	0.044*
C45	0.3100 (2)	0.33255 (7)	0.66223 (14)	0.0355 (5)
H45	0.3214	0.3621	0.6780	0.043*
C46	0.2313 (2)	0.32216 (8)	0.60406 (16)	0.0435 (6)
H46	0.1879	0.3446	0.5794	0.052*
C47	0.2143 (2)	0.27888 (7)	0.58070 (14)	0.0359 (5)
H47	0.1590	0.2721	0.5405	0.043*
C48	0.24737 (17)	0.01105 (7)	0.69962 (13)	0.0277 (4)
H48A	0.2850	-0.0080	0.7396	0.042*
H48B	0.2333	-0.0050	0.6488	0.042*
H48C	0.1782	0.0207	0.7205	0.042*
C49	0.52746 (15)	0.14412 (6)	0.44485 (11)	0.0171 (3)
H49	0.5457	0.1666	0.4828	0.021*
C50	0.42873 (15)	0.12269 (6)	0.45053 (11)	0.0175 (4)
C51	0.40527 (15)	0.08872 (6)	0.39549 (11)	0.0184 (4)
C52	0.47517 (15)	0.07751 (6)	0.33467 (11)	0.0193 (4)
C53	0.57277 (15)	0.10076 (6)	0.33119 (11)	0.0188 (4)
C54	0.60091 (15)	0.13416 (6)	0.38607 (11)	0.0174 (4)
C55	0.70990 (15)	0.15767 (6)	0.38214 (11)	0.0177 (4)
H55	0.7338	0.1543	0.3254	0.021*
C56	0.70088 (16)	0.20715 (6)	0.39854 (12)	0.0208 (4)
H56A	0.6709	0.2118	0.4524	0.025*
H56B	0.7742	0.2205	0.3992	0.025*
C57	0.62734 (17)	0.22929 (6)	0.33338 (12)	0.0252 (4)
H57A	0.6613	0.2264	0.2805	0.030*
H57B	0.5569	0.2136	0.3292	0.030*
C58	0.6057 (2)	0.27697 (7)	0.34883 (13)	0.0317 (5)
C59	0.6691 (3)	0.30944 (9)	0.31820 (16)	0.0539 (8)
H59	0.7307	0.3021	0.2885	0.065*
C60	0.6428 (4)	0.35360 (10)	0.3308 (2)	0.0811 (14)
H60	0.6861	0.3759	0.3085	0.097*
C61	0.5566 (4)	0.36466 (11)	0.3742 (2)	0.0849 (15)

H61	0.5404	0.3946	0.3831	0.102*
C62	0.4934 (3)	0.33305 (14)	0.4051 (3)	0.0876 (15)
H62	0.4325	0.3409	0.4352	0.105*
C63	0.5171 (2)	0.28891 (10)	0.3929 (2)	0.0554 (8)
H63	0.4725	0.2670	0.4149	0.066*
C64	0.44652 (17)	0.04193 (7)	0.27437 (13)	0.0276 (4)
H64A	0.4880	0.0461	0.2258	0.041*
H64B	0.3685	0.0431	0.2595	0.041*
H64C	0.4644	0.0134	0.2986	0.041*
C65	0.6480 (3)	0.04221 (9)	0.54767 (19)	0.0532 (7)
H65A	0.5834	0.0554	0.5701	0.080*
H65B	0.6257	0.0224	0.5033	0.080*
H65C	0.6945	0.0653	0.5270	0.080*
C66	0.2449 (3)	0.05482 (11)	0.97324 (17)	0.0541 (7)
H66A	0.2831	0.0826	0.9675	0.081*
H66B	0.2879	0.0357	1.0100	0.081*
H66C	0.1737	0.0602	0.9955	0.081*
C67	1.0729 (2)	0.10443 (9)	0.18161 (19)	0.0473 (6)
H67A	1.0485	0.1349	0.1805	0.071*
H67B	1.0977	0.0963	0.1281	0.071*
H67C	1.1330	0.1011	0.2224	0.071*
C68	0.5532 (3)	0.05356 (11)	0.05928 (16)	0.0518 (7)
H68A	0.5055	0.0314	0.0814	0.078*
H68B	0.5921	0.0409	0.0145	0.078*
H68C	0.5094	0.0784	0.0393	0.078*
C69	0.8670 (3)	0.07095 (13)	0.01281 (19)	0.0721 (10)
H69A	0.8737	0.1025	0.0216	0.108*
H69B	0.8095	0.0652	-0.0291	0.108*
H69C	0.9361	0.0593	-0.0048	0.108*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0263 (7)	0.0256 (7)	0.0220 (7)	-0.0026 (6)	0.0011 (5)	-0.0051 (6)
O2	0.0242 (7)	0.0421 (9)	0.0236 (7)	0.0154 (7)	0.0016 (6)	0.0012 (6)
O3	0.0277 (7)	0.0281 (8)	0.0304 (8)	0.0100 (6)	0.0045 (6)	0.0046 (6)
O4	0.0307 (7)	0.0216 (7)	0.0234 (7)	0.0007 (6)	0.0016 (6)	0.0044 (5)
O5	0.0289 (7)	0.0278 (8)	0.0253 (7)	-0.0037 (6)	0.0015 (6)	0.0084 (6)
O6	0.0196 (6)	0.0204 (7)	0.0229 (7)	-0.0027 (5)	0.0009 (5)	-0.0025 (5)
O7	0.0232 (7)	0.0178 (6)	0.0272 (7)	-0.0045 (5)	0.0026 (5)	-0.0070 (5)
O8	0.0291 (7)	0.0276 (8)	0.0216 (7)	0.0004 (6)	0.0050 (6)	-0.0064 (6)
O9	0.0655 (12)	0.0222 (8)	0.0349 (9)	-0.0091 (8)	-0.0030 (8)	-0.0058 (7)
O10	0.0569 (11)	0.0409 (10)	0.0396 (10)	-0.0131 (9)	0.0153 (8)	-0.0077 (8)
O11	0.0363 (9)	0.0382 (10)	0.0570 (12)	0.0048 (7)	0.0150 (8)	-0.0054 (8)
O12	0.0586 (12)	0.0630 (13)	0.0380 (10)	0.0010 (10)	-0.0055 (9)	-0.0196 (9)
O13	0.0572 (12)	0.0488 (11)	0.0350 (9)	-0.0158 (9)	0.0092 (8)	-0.0053 (8)
C1	0.0171 (8)	0.0158 (8)	0.0236 (9)	0.0002 (7)	0.0039 (7)	0.0000 (7)
C2	0.0184 (9)	0.0136 (8)	0.0231 (9)	-0.0022 (7)	0.0010 (7)	0.0016 (7)

C3	0.0191 (9)	0.0157 (8)	0.0217 (9)	-0.0040 (7)	0.0035 (7)	-0.0002 (7)
C4	0.0187 (9)	0.0156 (8)	0.0249 (9)	-0.0016 (7)	0.0038 (7)	0.0003 (7)
C5	0.0177 (9)	0.0209 (9)	0.0238 (9)	0.0012 (7)	0.0019 (7)	0.0030 (7)
C6	0.0195 (9)	0.0194 (9)	0.0206 (9)	-0.0015 (7)	0.0027 (7)	-0.0002 (7)
C7	0.0198 (9)	0.0202 (9)	0.0197 (9)	0.0025 (7)	-0.0009 (7)	-0.0006 (7)
C8	0.0240 (9)	0.0207 (9)	0.0225 (9)	-0.0017 (8)	0.0020 (7)	-0.0019 (7)
C9	0.0250 (10)	0.0242 (10)	0.0306 (11)	-0.0026 (8)	0.0034 (8)	0.0005 (8)
C10	0.0281 (10)	0.0223 (10)	0.0251 (10)	-0.0039 (8)	0.0020 (8)	-0.0001 (8)
C11	0.0610 (17)	0.0344 (13)	0.0509 (16)	-0.0015 (12)	-0.0270 (13)	-0.0012 (11)
C12	0.085 (2)	0.0276 (13)	0.0608 (18)	-0.0049 (14)	-0.0238 (16)	-0.0105 (12)
C13	0.0567 (16)	0.0236 (11)	0.0555 (16)	0.0038 (11)	0.0073 (13)	0.0057 (11)
C14	0.0617 (19)	0.0400 (16)	0.089 (2)	0.0092 (14)	-0.0299 (18)	0.0011 (16)
C15	0.0624 (18)	0.0298 (13)	0.077 (2)	0.0014 (12)	-0.0309 (16)	-0.0089 (13)
C16	0.0229 (9)	0.0223 (10)	0.0275 (10)	0.0034 (8)	0.0022 (8)	-0.0021 (8)
C17	0.0244 (9)	0.0170 (9)	0.0176 (8)	0.0021 (7)	-0.0012 (7)	0.0002 (7)
C18	0.0229 (9)	0.0191 (9)	0.0169 (8)	0.0012 (7)	-0.0008 (7)	-0.0020 (7)
C19	0.0238 (9)	0.0206 (9)	0.0193 (9)	0.0051 (7)	-0.0016 (7)	-0.0031 (7)
C20	0.0291 (10)	0.0186 (9)	0.0201 (9)	0.0061 (8)	-0.0018 (8)	-0.0006 (7)
C21	0.0270 (10)	0.0180 (9)	0.0155 (8)	-0.0006 (7)	-0.0007 (7)	-0.0011 (7)
C22	0.0219 (9)	0.0172 (9)	0.0159 (8)	0.0013 (7)	-0.0009 (7)	-0.0038 (7)
C23	0.0232 (9)	0.0165 (9)	0.0173 (8)	0.0015 (7)	0.0008 (7)	-0.0002 (7)
C24	0.0254 (10)	0.0196 (9)	0.0199 (9)	0.0044 (7)	-0.0015 (7)	-0.0031 (7)
C25	0.0412 (12)	0.0199 (10)	0.0247 (10)	0.0055 (9)	-0.0069 (9)	-0.0057 (8)
C26	0.0348 (11)	0.0231 (10)	0.0244 (10)	0.0067 (8)	-0.0094 (8)	-0.0075 (8)
C27	0.0365 (12)	0.0324 (12)	0.0314 (11)	0.0104 (9)	-0.0077 (9)	-0.0073 (9)
C28	0.0534 (15)	0.0318 (12)	0.0374 (13)	0.0202 (11)	-0.0143 (11)	-0.0097 (10)
C29	0.0700 (18)	0.0222 (11)	0.0417 (14)	0.0085 (11)	-0.0220(13)	-0.0077(10)
C30	0.0589 (17)	0.0359 (14)	0.0469 (15)	-0.0119(12)	-0.0023(13)	0.0005 (11)
C31	0.0466 (14)	0.0303 (12)	0.0413 (13)	0.0022 (10)	0.0031 (11)	-0.0106 (10)
C32	0.0388 (12)	0.0240 (11)	0.0367 (12)	0.0112 (9)	0.0041 (10)	0.0065 (9)
C33	0.0189 (8)	0.0150 (8)	0 0204 (9)	-0.0003(7)	0.0027 (7)	-0.0025(7)
C34	0.0200 (9)	0.0174 (9)	0.0200 (9)	0.0025(7)	0.0017(7)	-0.0025(7)
C35	0.0223(9)	0.0189 (9)	0.0208(9)	0.0029(7)	0.0029(7)	0.0011(7)
C36	0.0207(9)	0.0158 (9)	0.0251 (9)	0.00023(7)	0.0025(7)	0.0001(7)
C37	0.0154 (8)	0.0164 (8)	0.0222(9)	0.0008(7)	0.0005(7)	-0.0044(7)
C38	0.0193 (9)	0.0140 (8)	0.0193 (9)	0.0012(7)	0.0000(7)	-0.0017(7)
C39	0.0159 (8)	0.0145(8)	0.0193 (9)	0.0001 (6)	-0.00027(7)	-0.0018(7)
C40	0.0139(0)	0.0148(8)	0.0131(0) 0.0235(9)	0.0001(0) 0.0008(7)	0.0002(7)	-0.0024(7)
C41	0.0220(9)	0.0178(9)	0.0233(9)	0.0000(7)	0.0010(7)	-0.0021(7)
C42	0.0231(9) 0.0243(9)	0.0189(9)	0.0243(9)	0.0011(7) 0.0027(7)	0.0012(0)	-0.0033(7)
C43	0.0213(9)	0.0252(11)	0.0215(0)	0.0027(9)	-0.0068(9)	-0.0005(9)
C44	0.0331(11) 0.0416(13)	0.0232(11) 0.0322(12)	0.0355(12)	-0.0029(9)	-0.0062(10)	-0.0000(10)
C45	0.0498(14)	0.0322(12)	0.0355(12)	-0.0041(9)	0.0002(10)	-0.0098(9)
C46	0.0630(17)	0.0210(10) 0.0199(11)	0.0353(12) 0.0462(14)	0.0093(11)	-0.0120(12)	-0.0019(10)
C47	0.0475(14)	0.0238(11)	0.0349(12)	0.0044 (10)	-0.0134(10)	-0 0047 (9)
C48	0.0279(10)	0.0233(11)	0.0317(12)	-0.0058 (8)	0.0006 (0)	0.0077(7)
C49	0.0277(10)	0.0213 (10)	0.0169 (8)	0.0030(0)	-0.0000(7)	
C50	0.0221(9) 0.0214(0)	0.0121(0) 0.0134(8)	0.0107(8)	0.0012(7)	-0.0020(7)	0.0013(0)
C51	0.0217(0)	0.0134 (8)	0.0206 (0)	0.0027(7)	-0.0017(7)	0.0003(7)
0.51	0.0177 (9)	0.0140 (0)	0.0200 (9)	0.0002 (7)	0.0017(7)	0.0007(7)

C52	0.0231 (9)	0.0153 (8)	0.0192 (9)	-0.0001 (7)	-0.0025 (7)	-0.0021 (7)
C53	0.0218 (9)	0.0165 (8)	0.0181 (9)	0.0019 (7)	0.0009 (7)	-0.0006 (7)
C54	0.0198 (9)	0.0131 (8)	0.0190 (8)	0.0010 (7)	-0.0017 (7)	0.0011 (7)
C55	0.0193 (9)	0.0147 (8)	0.0189 (8)	-0.0002 (7)	0.0005 (7)	-0.0006 (7)
C56	0.0262 (10)	0.0139 (8)	0.0222 (9)	-0.0008 (7)	-0.0006 (7)	-0.0003 (7)
C57	0.0312 (10)	0.0185 (9)	0.0254 (10)	0.0009 (8)	-0.0043 (8)	0.0005 (8)
C58	0.0456 (13)	0.0209 (10)	0.0272 (11)	0.0064 (9)	-0.0121 (9)	0.0006 (8)
C59	0.100 (2)	0.0266 (13)	0.0350 (13)	-0.0102 (14)	0.0022 (14)	0.0023 (10)
C60	0.169 (4)	0.0267 (14)	0.0451 (17)	-0.014 (2)	-0.021 (2)	0.0089 (13)
C61	0.142 (4)	0.0341 (17)	0.073 (2)	0.037 (2)	-0.051 (3)	-0.0189 (16)
C62	0.073 (2)	0.067 (3)	0.119 (3)	0.044 (2)	-0.037 (2)	-0.052 (2)
C63	0.0439 (15)	0.0458 (16)	0.075 (2)	0.0129 (12)	-0.0107 (14)	-0.0228 (15)
C64	0.0299 (11)	0.0262 (10)	0.0271 (10)	-0.0064 (8)	0.0056 (8)	-0.0117 (8)
C65	0.072 (2)	0.0281 (13)	0.0588 (18)	0.0036 (13)	-0.0049 (15)	0.0052 (12)
C66	0.0652 (19)	0.0569 (18)	0.0409 (15)	-0.0057 (15)	0.0089 (13)	-0.0073 (13)
C67	0.0417 (14)	0.0381 (14)	0.0630 (17)	0.0005 (11)	0.0119 (13)	-0.0096 (12)
C68	0.0584 (17)	0.0664 (19)	0.0301 (13)	-0.0032 (14)	-0.0018 (12)	-0.0091 (12)
C69	0.102 (3)	0.076 (2)	0.0399 (16)	-0.026 (2)	0.0234 (17)	-0.0057 (15)

Geometric parameters (Å, °)

O1—C3	1.377 (2)	C30—C31	1.398 (4)
01—H1	0.8400	С30—Н30	0.9500
O2—C5	1.372 (2)	C31—H31	0.9500
O2—H2	0.8400	С32—Н32А	0.9800
O3—C19	1.367 (2)	С32—Н32В	0.9800
О3—Н3	0.8400	С32—Н32С	0.9800
O4—C21	1.380 (2)	C33—C38	1.390 (3)
O4—H4	0.8400	C33—C34	1.391 (3)
O5—C35	1.385 (2)	С33—Н33	0.9500
O5—H5	0.8400	C34—C35	1.395 (3)
O6—C37	1.387 (2)	C35—C36	1.396 (3)
O6—H6	0.8400	C36—C37	1.397 (3)
O7—C51	1.387 (2)	C36—C48	1.507 (3)
O7—H7	0.8400	C37—C38	1.397 (3)
O8—C53	1.380 (2)	C38—C39	1.527 (2)
O8—H8	0.8400	C39—C50	1.524 (2)
O9—C65	1.402 (3)	C39—C40	1.543 (2)
О9—Н9	0.8400	С39—Н39	1.0000
O10—C66	1.414 (3)	C40—C41	1.532 (3)
O10—H10	0.8400	C40—H40A	0.9900
O11—C67	1.416 (3)	C40—H40B	0.9900
011—H11	0.8400	C41—C42	1.510 (3)
O12—C68	1.391 (3)	C41—H41A	0.9900
O12—H12	0.8400	C41—H41B	0.9900
O13—C69	1.432 (4)	C42—C43	1.381 (3)
O13—H13	0.8400	C42—C47	1.383 (3)
C1—C2	1.387 (3)	C43—C44	1.391 (3)
C1—C6	1.392 (3)	C43—H43	0.9500

C1—H1A	0.9500	C44—C45	1.376 (4)
C2—C3	1.400 (3)	C44—H44	0.9500
C2—C55	1.525 (2)	C45—C46	1.367 (4)
C3—C4	1.398 (3)	C45—H45	0.9500
C4—C5	1.395 (3)	C46—C47	1.393 (3)
C4—C16	1.513 (3)	С46—Н46	0.9500
C5—C6	1.402 (3)	C47—H47	0.9500
C6—C7	1.531 (3)	C48—H48A	0.9800
C7—C18	1.531 (3)	C48—H48B	0.9800
С7—С8	1.543 (3)	C48—H48C	0.9800
C7—H7A	1.0000	C49—C50	1.388 (3)
C8—C9	1.534 (3)	C49—C54	1.392 (3)
C8—H8A	0.9900	С49—Н49	0.9500
C8—H8B	0.9900	C50—C51	1.402 (2)
C9—C10	1.512 (3)	C51—C52	1.397 (3)
С9—Н9А	0.9900	C52—C53	1.400 (3)
С9—Н9В	0.9900	C52—C64	1.506 (3)
C10—C11	1.377 (3)	C53—C54	1.398 (2)
C10—C15	1.381 (3)	C54—C55	1.527 (2)
C11—C12	1.391 (4)	C55—C56	1.544 (2)
C11—H11A	0.9500	С55—Н55	1.0000
C12—C13	1.331 (4)	C56—C57	1.529 (3)
C12—H12A	0.9500	С56—Н56А	0.9900
C13—C14	1.391 (4)	С56—Н56В	0.9900
C13—H13A	0.9500	C57—C58	1.508 (3)
C14—C15	1.387 (4)	С57—Н57А	0.9900
C14—H14	0.9500	С57—Н57В	0.9900
С15—Н15	0.9500	C58—C59	1.376 (4)
C16—H16A	0.9800	C58—C63	1.390 (4)
C16—H16B	0.9800	C59—C60	1.408 (5)
C16—H16C	0.9800	С59—Н59	0.9500
C17—C18	1.390 (3)	C60—C61	1.352 (6)
C17—C22	1.391 (3)	С60—Н60	0.9500
C17—H17	0.9500	C61—C62	1.358 (7)
C18—C19	1.408 (3)	C61—H61	0.9500
C19—C20	1.402 (3)	C62—C63	1.399 (4)
C20—C21	1.401 (3)	С62—Н62	0.9500
C20—C32	1.505 (3)	С63—Н63	0.9500
C21—C22	1.399 (3)	С64—Н64А	0.9800
C22—C23	1.527 (3)	С64—Н64В	0.9800
C23—C34	1.524 (3)	C64—H64C	0.9800
C23—C24	1.538 (3)	С65—Н65А	0.9800
С23—Н23	1.0000	С65—Н65В	0.9800
C24—C25	1.534 (3)	С65—Н65С	0.9800
C24—H24A	0.9900	С66—Н66А	0.9800
C24—H24B	0.9900	С66—Н66В	0.9800
C25—C26	1.509 (3)	С66—Н66С	0.9800
С25—Н25А	0.9900	С67—Н67А	0.9800
С25—Н25В	0.9900	С67—Н67В	0.9800

C26—C31	1.380 (3)	С67—Н67С	0.9800
C26—C27	1.390 (3)	C68—H68A	0.9800
C27—C28	1.389 (3)	C68—H68B	0.9800
С27—Н27	0.9500	C68—H68C	0.9800
C28—C29	1.372 (4)	С69—Н69А	0.9800
C28—H28	0.9500	С69—Н69В	0.9800
C29—C30	1.386 (4)	С69—Н69С	0.9800
С29—Н29	0.9500		
С3—01—Н1	109.5	C35—C36—C37	117.46 (17)
С5—О2—Н2	109.5	C35—C36—C48	122.06 (17)
С19—О3—Н3	109.5	C37—C36—C48	120.48 (17)
C21—O4—H4	109.5	O6—C37—C36	116.36 (16)
С35—О5—Н5	109.5	O6—C37—C38	121.06 (16)
С37—О6—Н6	109.5	C36—C37—C38	122.58 (17)
С51—О7—Н7	109.5	C33—C38—C37	117.24 (17)
С53—О8—Н8	109.5	C33—C38—C39	121.07 (16)
С65—О9—Н9	109.5	C37—C38—C39	121.61 (16)
C66—O10—H10	109.5	C50—C39—C38	112.18 (14)
C67—O11—H11	109.5	C50—C39—C40	111.99 (15)
С68—О12—Н12	109.5	C38—C39—C40	111.45 (15)
С69—О13—Н13	109.5	С50—С39—Н39	106.9
C2—C1—C6	122.80 (17)	С38—С39—Н39	106.9
C2—C1—H1A	118.6	С40—С39—Н39	106.9
C6—C1—H1A	118.6	C41—C40—C39	113.01 (15)
C1—C2—C3	117.60 (17)	C41—C40—H40A	109.0
C1—C2—C55	121.22 (16)	C39—C40—H40A	109.0
C3—C2—C55	121.18 (16)	C41—C40—H40B	109.0
O1—C3—C4	117.27 (16)	С39—С40—Н40В	109.0
O1—C3—C2	120.51 (17)	H40A—C40—H40B	107.8
C4—C3—C2	122.21 (17)	C42—C41—C40	111.48 (16)
C5—C4—C3	117.59 (17)	C42—C41—H41A	109.3
C5—C4—C16	122.23 (17)	C40—C41—H41A	109.3
C3—C4—C16	120.18 (17)	C42—C41—H41B	109.3
O2—C5—C4	121.68 (17)	C40—C41—H41B	109.3
O2—C5—C6	116.01 (17)	H41A—C41—H41B	108.0
C4—C5—C6	122.27 (17)	C43—C42—C47	117.87 (19)
C1—C6—C5	117.41 (17)	C43—C42—C41	120.73 (18)
C1—C6—C7	121.48 (16)	C47—C42—C41	121.39 (19)
C5—C6—C7	121.10 (16)	C42—C43—C44	121.3 (2)
C6—C7—C18	110.57 (15)	C42—C43—H43	119.3
C6—C7—C8	112.33 (15)	C44—C43—H43	119.3
C18—C7—C8	111.52 (15)	C45—C44—C43	119.9 (2)
С6—С7—Н7А	107.4	C45—C44—H44	120.0
С18—С7—Н7А	107.4	C43—C44—H44	120.0
С8—С7—Н7А	107.4	C46—C45—C44	119.5 (2)
C9—C8—C7	114.41 (16)	C46—C45—H45	120.2
С9—С8—Н8А	108.7	C44—C45—H45	120.2
С7—С8—Н8А	108.7	C45—C46—C47	120.5 (2)
С9—С8—Н8В	108.7	C45—C46—H46	119.8

С7—С8—Н8В	108.7	C47—C46—H46	119.8
H8A—C8—H8B	107.6	C42—C47—C46	120.9 (2)
C10—C9—C8	112.78 (17)	С42—С47—Н47	119.6
С10—С9—Н9А	109.0	С46—С47—Н47	119.6
С8—С9—Н9А	109.0	С36—С48—Н48А	109.5
С10—С9—Н9В	109.0	C36—C48—H48B	109.5
С8—С9—Н9В	109.0	H48A—C48—H48B	109.5
Н9А—С9—Н9В	107.8	C36—C48—H48C	109.5
C11—C10—C15	116.1 (2)	H48A—C48—H48C	109.5
C11—C10—C9	122.9 (2)	H48B-C48-H48C	109.5
C15—C10—C9	121.0 (2)	C50—C49—C54	122.98 (16)
C10-C11-C12	121.8 (2)	С50—С49—Н49	118.5
C10-C11-H11A	119.1	С54—С49—Н49	118.5
C12—C11—H11A	119.1	C49—C50—C51	117.38 (16)
C13—C12—C11	121.3 (3)	C49—C50—C39	121.37 (16)
C13—C12—H12A	119.4	C51—C50—C39	121.24 (16)
C11—C12—H12A	119.4	O7—C51—C52	120.82 (16)
C12—C13—C14	119.1 (3)	O7—C51—C50	116.92 (16)
C12—C13—H13A	120.5	C52—C51—C50	122.24 (17)
C14—C13—H13A	120.5	C51—C52—C53	117.72 (16)
C15—C14—C13	119.4 (3)	C51—C52—C64	121.34 (17)
C15—C14—H14	120.3	C53—C52—C64	120.94 (17)
C13—C14—H14	120.3	O8—C53—C54	117.25 (16)
C10-C15-C14	122.3 (3)	O8—C53—C52	120.69 (16)
C10—C15—H15	118.9	C54—C53—C52	122.06 (17)
C14—C15—H15	118.9	C49—C54—C53	117.58 (17)
C4—C16—H16A	109.5	C49—C54—C55	121.91 (16)
C4—C16—H16B	109.5	C53—C54—C55	120.49 (16)
H16A—C16—H16B	109.5	C2—C55—C54	110.54 (14)
C4—C16—H16C	109.5	C2—C55—C56	112.50 (15)
H16A—C16—H16C	109.5	C54—C55—C56	112.60 (15)
H16B—C16—H16C	109.5	С2—С55—Н55	106.9
C18—C17—C22	124.03 (17)	С54—С55—Н55	106.9
C18—C17—H17	118.0	С56—С55—Н55	106.9
С22—С17—Н17	118.0	C57—C56—C55	110.91 (15)
C17—C18—C19	116.81 (17)	С57—С56—Н56А	109.5
C17—C18—C7	120.96 (16)	С55—С56—Н56А	109.5
C19—C18—C7	122.23 (17)	С57—С56—Н56В	109.5
O3—C19—C20	115.56 (17)	С55—С56—Н56В	109.5
O3—C19—C18	123.02 (18)	H56A—C56—H56B	108.0
C20-C19-C18	121.42 (17)	C58—C57—C56	114.43 (16)
C21—C20—C19	119.04 (17)	С58—С57—Н57А	108.7
C21—C20—C32	121.71 (18)	С56—С57—Н57А	108.7
C19—C20—C32	119.23 (18)	С58—С57—Н57В	108.7
O4—C21—C22	122.31 (17)	С56—С57—Н57В	108.7
O4—C21—C20	116.51 (17)	Н57А—С57—Н57В	107.6
C22—C21—C20	121.17 (17)	C59—C58—C63	118.5 (2)
C17—C22—C21	117.49 (17)	C59—C58—C57	122.0 (2)
C17—C22—C23	121.12 (16)	C63—C58—C57	119.5 (2)

C21—C22—C23	121.39 (17)	C58—C59—C60	120.0 (3)
C34—C23—C22	110.60 (14)	С58—С59—Н59	120.0
C34—C23—C24	111.60 (15)	С60—С59—Н59	120.0
C22—C23—C24	113.00 (15)	C61—C60—C59	120.7 (4)
C34—C23—H23	107.1	С61—С60—Н60	119.6
С22—С23—Н23	107.1	С59—С60—Н60	119.6
C24—C23—H23	107.1	C60—C61—C62	120.0 (3)
C25—C24—C23	113.39 (16)	С60—С61—Н61	120.0
C25—C24—H24A	108.9	C62—C61—H61	120.0
C23—C24—H24A	108.9	C61—C62—C63	120.4 (4)
C25—C24—H24B	108.9	С61—С62—Н62	119.8
C23—C24—H24B	108.9	С63—С62—Н62	119.8
H24A—C24—H24B	107.7	C58—C63—C62	120.3 (4)
C26—C25—C24	111.64 (17)	С58—С63—Н63	119.9
С26—С25—Н25А	109.3	С62—С63—Н63	119.9
C24—C25—H25A	109.3	С52—С64—Н64А	109.5
С26—С25—Н25В	109.3	C52—C64—H64B	109.5
С24—С25—Н25В	109.3	H64A—C64—H64B	109.5
H25A—C25—H25B	108.0	С52—С64—Н64С	109.5
C31—C26—C27	118.4 (2)	H64A—C64—H64C	109.5
C31—C26—C25	121.0 (2)	H64B—C64—H64C	109.5
C27—C26—C25	120.6 (2)	O9—C65—H65A	109.5
C28—C27—C26	120.9 (2)	O9—C65—H65B	109.5
С28—С27—Н27	119.6	H65A—C65—H65B	109.5
С26—С27—Н27	119.6	O9—C65—H65C	109.5
C29—C28—C27	120.0 (2)	H65A—C65—H65C	109.5
C29—C28—H28	120.0	H65B—C65—H65C	109.5
С27—С28—Н28	120.0	O10—C66—H66A	109.5
C28—C29—C30	120.3 (2)	O10—C66—H66B	109.5
С28—С29—Н29	119.9	H66A—C66—H66B	109.5
С30—С29—Н29	119.9	O10—C66—H66C	109.5
C29—C30—C31	119.3 (3)	H66A—C66—H66C	109.5
С29—С30—Н30	120.4	H66B—C66—H66C	109.5
С31—С30—Н30	120.4	O11—C67—H67A	109.5
C26—C31—C30	121.1 (2)	O11—C67—H67B	109.5
C26—C31—H31	119.4	H67A—C67—H67B	109.5
C30-C31-H31	119.4	O11—C67—H67C	109.5
С20—С32—Н32А	109.5	Н67А—С67—Н67С	109.5
С20—С32—Н32В	109.5	Н67В—С67—Н67С	109.5
H32A—C32—H32B	109.5	O12—C68—H68A	109.5
С20—С32—Н32С	109.5	O12—C68—H68B	109.5
H32A—C32—H32C	109.5	H68A—C68—H68B	109.5
H32B—C32—H32C	109.5	O12—C68—H68C	109.5
C38—C33—C34	122.69 (17)	H68A—C68—H68C	109.5
С38—С33—Н33	118.7	H68B—C68—H68C	109.5
С34—С33—Н33	118.7	О13—С69—Н69А	109.5
C33—C34—C35	117.81 (17)	О13—С69—Н69В	109.5
C33—C34—C23	120.98 (16)	H69A—C69—H69B	109.5
C35—C34—C23	121.20 (16)	О13—С69—Н69С	109.5

O5—C35—C34 O5—C35—C36 C34—C35—C36	117.01 (17) 120.79 (17) 122.12 (17)	Н69А—С69—Н69С Н69В—С69—Н69С		109.5 109.5
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1…O8	0.84	1.87	2.709 (2)	178
O2—H2···O6 ⁱ	0.84	1.85	2.6442 (19)	157
O3—H3···O2	0.84	1.85	2.687 (2)	171
O4—H4…O5	0.84	1.98	2.805 (2)	169
O5—H5…O10	0.84	1.82	2.643 (2)	165
O6—H6…O7	0.84	1.86	2.7001 (19)	177
07—H7···09 ⁱⁱ	0.84	1.86	2.639 (2)	154
O8—H8…O12	0.84	1.90	2.631 (2)	145
O10—H10…O13 ⁱⁱ	0.84	1.92	2.754 (3)	173
O11—H11…O1	0.84	1.93	2.716 (2)	156
O12—H12…O13	0.84	1.91	2.748 (3)	174
O13—H13…O11	0.84	1.84	2.671 (3)	172

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*, -*z*+1.

Fig. 1

